首页> 外文OA文献 >Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet
【2h】

Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet

机译:用于传播不确定性的可扩展且高效的算法   从数据到推理到预测大规模问题,用   应用于南极冰盖的流动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The majority of research on efficient and scalable algorithms incomputational science and engineering has focused on the forward problem: givenparameter inputs, solve the governing equations to determine output quantitiesof interest. In contrast, here we consider the broader question: given a(large-scale) model containing uncertain parameters, (possibly) noisyobservational data, and a prediction quantity of interest, how do we constructefficient and scalable algorithms to (1) infer the model parameters from thedata (the deterministic inverse problem), (2) quantify the uncertainty in theinferred parameters (the Bayesian inference problem), and (3) propagate theresulting uncertain parameters through the model to issue predictions withquantified uncertainties (the forward uncertainty propagation problem)? Wepresent efficient and scalable algorithms for this end-to-end,data-to-prediction process under the Gaussian approximation and in the contextof modeling the flow of the Antarctic ice sheet and its effect on sea level.The ice is modeled as a viscous, incompressible, creeping, shear-thinningfluid. The observational data come from InSAR satellite measurements of surfaceice flow velocity, and the uncertain parameter field to be inferred is thebasal sliding parameter. The prediction quantity of interest is the present-dayice mass flux from the Antarctic continent to the ocean. We show that the workrequired for executing this data-to-prediction process is independent of thestate dimension, parameter dimension, data dimension, and number of processorcores. The key to achieving this dimension independence is to exploit the factthat the observational data typically provide only sparse information on modelparameters. This property can be exploited to construct a low rankapproximation of the linearized parameter-to-observable map.
机译:计算科学和工程学中有关高效和可扩展算法的大多数研究都集中在前向问题上:给定参数输入,求解控制方程以确定感兴趣的输出量。相比之下,这里我们考虑一个更广泛的问题:给定一个包含不确定参数,(可能)嘈杂的观测数据和感兴趣的预测量的(大规模)模型,我们如何构造高效且可扩展的算法来(1)推断模型参数从数据(确定性反问题)中,(2)量化推断参数的不确定性(贝叶斯推理问题),以及(3)将结果不确定性参数通过模型传播以发布具有量化不确定性的预测(正向不确定性传播问题)?我们在高斯近似下并在对南极冰盖的流动及其对海平面的影响进行建模的背景下,针对此端到端,数据到预测的过程提供了高效且可扩展的算法。冰被建模为粘性的,不可压缩,蠕变,稀疏剪切流体。观测数据来自InSAR卫星对地表流速的测量,不确定的参数场是基础滑动参数。感兴趣的预测量是当今从南极大陆到海洋的质量通量。我们表明执行此数据到预测过程所需的工作与状态维,参数维,数据维和处理器核数无关。实现这种尺寸独立性的关键是利用以下事实:观测数据通常仅提供有关模型参数的稀疏信息。可以利用此属性来构建线性化的参数可观察图的低秩逼近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号